Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

minus2(n__0, Y) -> 0
minus2(n__s1(X), n__s1(Y)) -> minus2(activate1(X), activate1(Y))
geq2(X, n__0) -> true
geq2(n__0, n__s1(Y)) -> false
geq2(n__s1(X), n__s1(Y)) -> geq2(activate1(X), activate1(Y))
div2(0, n__s1(Y)) -> 0
div2(s1(X), n__s1(Y)) -> if3(geq2(X, activate1(Y)), n__s1(n__div2(n__minus2(X, activate1(Y)), n__s1(activate1(Y)))), n__0)
if3(true, X, Y) -> activate1(X)
if3(false, X, Y) -> activate1(Y)
0 -> n__0
s1(X) -> n__s1(X)
div2(X1, X2) -> n__div2(X1, X2)
minus2(X1, X2) -> n__minus2(X1, X2)
activate1(n__0) -> 0
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__div2(X1, X2)) -> div2(activate1(X1), X2)
activate1(n__minus2(X1, X2)) -> minus2(X1, X2)
activate1(X) -> X

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

minus2(n__0, Y) -> 0
minus2(n__s1(X), n__s1(Y)) -> minus2(activate1(X), activate1(Y))
geq2(X, n__0) -> true
geq2(n__0, n__s1(Y)) -> false
geq2(n__s1(X), n__s1(Y)) -> geq2(activate1(X), activate1(Y))
div2(0, n__s1(Y)) -> 0
div2(s1(X), n__s1(Y)) -> if3(geq2(X, activate1(Y)), n__s1(n__div2(n__minus2(X, activate1(Y)), n__s1(activate1(Y)))), n__0)
if3(true, X, Y) -> activate1(X)
if3(false, X, Y) -> activate1(Y)
0 -> n__0
s1(X) -> n__s1(X)
div2(X1, X2) -> n__div2(X1, X2)
minus2(X1, X2) -> n__minus2(X1, X2)
activate1(n__0) -> 0
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__div2(X1, X2)) -> div2(activate1(X1), X2)
activate1(n__minus2(X1, X2)) -> minus2(X1, X2)
activate1(X) -> X

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

DIV2(s1(X), n__s1(Y)) -> IF3(geq2(X, activate1(Y)), n__s1(n__div2(n__minus2(X, activate1(Y)), n__s1(activate1(Y)))), n__0)
GEQ2(n__s1(X), n__s1(Y)) -> ACTIVATE1(Y)
ACTIVATE1(n__0) -> 01
IF3(true, X, Y) -> ACTIVATE1(X)
GEQ2(n__s1(X), n__s1(Y)) -> ACTIVATE1(X)
MINUS2(n__s1(X), n__s1(Y)) -> ACTIVATE1(Y)
DIV2(s1(X), n__s1(Y)) -> ACTIVATE1(Y)
ACTIVATE1(n__div2(X1, X2)) -> ACTIVATE1(X1)
DIV2(s1(X), n__s1(Y)) -> GEQ2(X, activate1(Y))
ACTIVATE1(n__s1(X)) -> S1(activate1(X))
MINUS2(n__s1(X), n__s1(Y)) -> MINUS2(activate1(X), activate1(Y))
MINUS2(n__s1(X), n__s1(Y)) -> ACTIVATE1(X)
MINUS2(n__0, Y) -> 01
IF3(false, X, Y) -> ACTIVATE1(Y)
ACTIVATE1(n__div2(X1, X2)) -> DIV2(activate1(X1), X2)
GEQ2(n__s1(X), n__s1(Y)) -> GEQ2(activate1(X), activate1(Y))
ACTIVATE1(n__minus2(X1, X2)) -> MINUS2(X1, X2)
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)

The TRS R consists of the following rules:

minus2(n__0, Y) -> 0
minus2(n__s1(X), n__s1(Y)) -> minus2(activate1(X), activate1(Y))
geq2(X, n__0) -> true
geq2(n__0, n__s1(Y)) -> false
geq2(n__s1(X), n__s1(Y)) -> geq2(activate1(X), activate1(Y))
div2(0, n__s1(Y)) -> 0
div2(s1(X), n__s1(Y)) -> if3(geq2(X, activate1(Y)), n__s1(n__div2(n__minus2(X, activate1(Y)), n__s1(activate1(Y)))), n__0)
if3(true, X, Y) -> activate1(X)
if3(false, X, Y) -> activate1(Y)
0 -> n__0
s1(X) -> n__s1(X)
div2(X1, X2) -> n__div2(X1, X2)
minus2(X1, X2) -> n__minus2(X1, X2)
activate1(n__0) -> 0
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__div2(X1, X2)) -> div2(activate1(X1), X2)
activate1(n__minus2(X1, X2)) -> minus2(X1, X2)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

DIV2(s1(X), n__s1(Y)) -> IF3(geq2(X, activate1(Y)), n__s1(n__div2(n__minus2(X, activate1(Y)), n__s1(activate1(Y)))), n__0)
GEQ2(n__s1(X), n__s1(Y)) -> ACTIVATE1(Y)
ACTIVATE1(n__0) -> 01
IF3(true, X, Y) -> ACTIVATE1(X)
GEQ2(n__s1(X), n__s1(Y)) -> ACTIVATE1(X)
MINUS2(n__s1(X), n__s1(Y)) -> ACTIVATE1(Y)
DIV2(s1(X), n__s1(Y)) -> ACTIVATE1(Y)
ACTIVATE1(n__div2(X1, X2)) -> ACTIVATE1(X1)
DIV2(s1(X), n__s1(Y)) -> GEQ2(X, activate1(Y))
ACTIVATE1(n__s1(X)) -> S1(activate1(X))
MINUS2(n__s1(X), n__s1(Y)) -> MINUS2(activate1(X), activate1(Y))
MINUS2(n__s1(X), n__s1(Y)) -> ACTIVATE1(X)
MINUS2(n__0, Y) -> 01
IF3(false, X, Y) -> ACTIVATE1(Y)
ACTIVATE1(n__div2(X1, X2)) -> DIV2(activate1(X1), X2)
GEQ2(n__s1(X), n__s1(Y)) -> GEQ2(activate1(X), activate1(Y))
ACTIVATE1(n__minus2(X1, X2)) -> MINUS2(X1, X2)
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)

The TRS R consists of the following rules:

minus2(n__0, Y) -> 0
minus2(n__s1(X), n__s1(Y)) -> minus2(activate1(X), activate1(Y))
geq2(X, n__0) -> true
geq2(n__0, n__s1(Y)) -> false
geq2(n__s1(X), n__s1(Y)) -> geq2(activate1(X), activate1(Y))
div2(0, n__s1(Y)) -> 0
div2(s1(X), n__s1(Y)) -> if3(geq2(X, activate1(Y)), n__s1(n__div2(n__minus2(X, activate1(Y)), n__s1(activate1(Y)))), n__0)
if3(true, X, Y) -> activate1(X)
if3(false, X, Y) -> activate1(Y)
0 -> n__0
s1(X) -> n__s1(X)
div2(X1, X2) -> n__div2(X1, X2)
minus2(X1, X2) -> n__minus2(X1, X2)
activate1(n__0) -> 0
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__div2(X1, X2)) -> div2(activate1(X1), X2)
activate1(n__minus2(X1, X2)) -> minus2(X1, X2)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 1 SCC with 3 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
QDP

Q DP problem:
The TRS P consists of the following rules:

DIV2(s1(X), n__s1(Y)) -> IF3(geq2(X, activate1(Y)), n__s1(n__div2(n__minus2(X, activate1(Y)), n__s1(activate1(Y)))), n__0)
GEQ2(n__s1(X), n__s1(Y)) -> ACTIVATE1(Y)
IF3(true, X, Y) -> ACTIVATE1(X)
GEQ2(n__s1(X), n__s1(Y)) -> ACTIVATE1(X)
MINUS2(n__s1(X), n__s1(Y)) -> ACTIVATE1(Y)
DIV2(s1(X), n__s1(Y)) -> ACTIVATE1(Y)
ACTIVATE1(n__div2(X1, X2)) -> ACTIVATE1(X1)
DIV2(s1(X), n__s1(Y)) -> GEQ2(X, activate1(Y))
MINUS2(n__s1(X), n__s1(Y)) -> MINUS2(activate1(X), activate1(Y))
MINUS2(n__s1(X), n__s1(Y)) -> ACTIVATE1(X)
IF3(false, X, Y) -> ACTIVATE1(Y)
ACTIVATE1(n__div2(X1, X2)) -> DIV2(activate1(X1), X2)
GEQ2(n__s1(X), n__s1(Y)) -> GEQ2(activate1(X), activate1(Y))
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)
ACTIVATE1(n__minus2(X1, X2)) -> MINUS2(X1, X2)

The TRS R consists of the following rules:

minus2(n__0, Y) -> 0
minus2(n__s1(X), n__s1(Y)) -> minus2(activate1(X), activate1(Y))
geq2(X, n__0) -> true
geq2(n__0, n__s1(Y)) -> false
geq2(n__s1(X), n__s1(Y)) -> geq2(activate1(X), activate1(Y))
div2(0, n__s1(Y)) -> 0
div2(s1(X), n__s1(Y)) -> if3(geq2(X, activate1(Y)), n__s1(n__div2(n__minus2(X, activate1(Y)), n__s1(activate1(Y)))), n__0)
if3(true, X, Y) -> activate1(X)
if3(false, X, Y) -> activate1(Y)
0 -> n__0
s1(X) -> n__s1(X)
div2(X1, X2) -> n__div2(X1, X2)
minus2(X1, X2) -> n__minus2(X1, X2)
activate1(n__0) -> 0
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__div2(X1, X2)) -> div2(activate1(X1), X2)
activate1(n__minus2(X1, X2)) -> minus2(X1, X2)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.